A Genetic Algorithm Based Support Vector Machine Model for Blood-Brain Barrier Penetration Prediction

نویسندگان

  • Daqing Zhang
  • Jianfeng Xiao
  • Nannan Zhou
  • Mingyue Zheng
  • Xiaomin Luo
  • Hualiang Jiang
  • Kaixian Chen
چکیده

Blood-brain barrier (BBB) is a highly complex physical barrier determining what substances are allowed to enter the brain. Support vector machine (SVM) is a kernel-based machine learning method that is widely used in QSAR study. For a successful SVM model, the kernel parameters for SVM and feature subset selection are the most important factors affecting prediction accuracy. In most studies, they are treated as two independent problems, but it has been proven that they could affect each other. We designed and implemented genetic algorithm (GA) to optimize kernel parameters and feature subset selection for SVM regression and applied it to the BBB penetration prediction. The results show that our GA/SVM model is more accurate than other currently available log BB models. Therefore, to optimize both SVM parameters and feature subset simultaneously with genetic algorithm is a better approach than other methods that treat the two problems separately. Analysis of our log BB model suggests that carboxylic acid group, polar surface area (PSA)/hydrogen-bonding ability, lipophilicity, and molecular charge play important role in BBB penetration. Among those properties relevant to BBB penetration, lipophilicity could enhance the BBB penetration while all the others are negatively correlated with BBB penetration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Genetic Algorithm Based Support Vector Machine Model in Second Virial Coefficient Prediction of Pure Compounds

In this work, a Genetic Algorithm boosted Least Square Support Vector Machine model by a set of linear equations instead of a quadratic program, which is improved version of Support Vector Machine model, was used for estimation of 98 pure compounds second virial coefficient. Compounds were classified to the different groups. Finest parameters were obtained by Genetic Algorithm method ...

متن کامل

The Application of Least Square Support Vector Machine as a Mathematical Algorithm for Diagnosing Drilling Effectivity in Shaly Formations

The problem of slow drilling in deep shale formations occurs worldwide causing significant expenses to the oil industry. Bit balling which is widely considered as the main cause of poor bit performance in shales, especially deep shales, is being drilled with water-based mud. Therefore, efforts have been made to develop a model to diagnose drilling effectivity. Hence, we arrived at graphical cor...

متن کامل

QSAR Study of 17β-HSD3 Inhibitors by Genetic Algorithm-Support Vector Machine as a Target Receptor for the Treatment of Prostate Cancer

The 17β-HSD3 enzyme plays a key role in treatment of prostate cancer and small inhibitorscan be used to efficiently target it. In the present study, the multiple linear regression (MLR),and support vector machine (SVM) methods were used to interpret the chemical structuralfunctionality against the inhibition activity of some 17β-HSD3inhibitors. Chemical structuralinformation were described thro...

متن کامل

QSAR Study of 17β-HSD3 Inhibitors by Genetic Algorithm-Support Vector Machine as a Target Receptor for the Treatment of Prostate Cancer

The 17β-HSD3 enzyme plays a key role in treatment of prostate cancer and small inhibitorscan be used to efficiently target it. In the present study, the multiple linear regression (MLR),and support vector machine (SVM) methods were used to interpret the chemical structuralfunctionality against the inhibition activity of some 17β-HSD3inhibitors. Chemical structuralinformation were described thro...

متن کامل

PREDICTION OF SLOPE STABILITY STATE FOR CIRCULAR FAILURE: A HYBRID SUPPORT VECTOR MACHINE WITH HARMONY SEARCH ALGORITHM

The slope stability analysis is routinely performed by engineers to estimate the stability of river training works, road embankments, embankment dams, excavations and retaining walls. This paper presents a new approach to build a model for the prediction of slope stability state. The support vector machine (SVM) is a new machine learning method based on statistical learning theory, which can so...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2015  شماره 

صفحات  -

تاریخ انتشار 2015